
XXth International Conference on the use of Computers in Radiation therapy 8 - 11 July 2024, Lyon, France

Partial-ring PET Image Correction using Implicit Neural Representation
Learning

Shubhangi Makkar1,2, Siqi Ye3, Marina Béguin2, Günther Dissertori2, Jan Hrbacek1, Antony Lomax1,2, Keegan
McNamara1,2, Christian Ritzer2, Damien C. Weber1,4,5, Lei Xing3, and Carla Winterhalter1

1Center for Proton Therapy, PSI, Switzerland
2Department of Physics, ETH Zürich, Switzerland

3Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
4Radiation Oncology Department of the University Hospital of Zurich, Switzerland

5Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland

Abstract This work introduces a deep learning-based ap-
proach to enhance image quality in partial-ring PET scanners,
which often suffer from significant artifacts due to incomplete
angular field of view. Our method utilizes implicit neural repre-
sentation (INR) learning with coordinate-based multilayer per-
ceptrons (MLPs) featuring sinusoidal activations. These MLPs
parameterize partial-ring PET images, training the patient-
specific network to predict fully sampled images from partially
sampled ones. This approach was validated using twenty digi-
tal brain phantoms, Monte Carlo simulated Derenzo phantom,
and experimentally acquired hot rod phantom data from the
partial-ring PETITION PET scanner. The results show that
the INR learning method significantly improves image quality,
achieving a PSNR above 30dB and SSIM over 0.95 for all cases.
This method presents a promising solution for enhancing PET
images from partial-ring scanners.

1 Introduction

Positron Emission Tomography (PET) plays an impor-
tant role in functional imaging. Traditional PET sys-
tems rely on detectors arranged in a ring configuration [1,
2] to capture comprehensive imaging data across all an-
gular views. However, the emergence of partial-ring
PET systems has introduced both economical and prac-
tical advantages, particularly in specialized applications
such as locoregional imaging [3] or online heavy-ion ther-
apy verification [4]. Despite these benefits, partial-ring
configurations inherently suffer from incomplete data
acquisition, leading to significant image artifacts and
reduced image quality.
Previously, model-based techniques have been employed
to correct limited-angle PET images. For instance, sino-
gram completion using interpolation prior to reconstruc-
tion is an approach [5]. Another approach is the use of
compressed sensing [6], which leverages the sparsity of
data in a transform domain. Applying regularization
constraints such as total variation [7] further helps in
enforcing smoothness, thereby helping in artefact re-
duction. However, these model-based approaches have
limitations, particularly when it comes to parameter
optimization for regularization and computation times.
To address these limitations, recent advances in deep
learning (DL) and medical imaging have opened new

pathways. The concept of implicit neural representa-
tion (INR) [8] presents a promising approach to obtain
high-fidelity images from incomplete data sets [9]. The
potential of deep learning, particularly in the context of
INR learning, offers an innovative approach to correct
and enhance PET images acquired from partial-ring
systems. Unlike conventional DL approaches that de-
pend on large labeled datasets, INR’s ability to train
unsupervised with sparse data makes it ideal for enhanc-
ing image quality in partial-ring PET systems. Here,
we propose a framework that uses INR learning to ef-
fectively correct partial-ring PET images, particularly
focusing on the developed partial-ring PETITION (PET
for InTensive care units and Innovative protON therapy)
scanner’s design for proton therapy [10].

2 Materials and Methods

2.1 INR-based PET Image Correction

Figure 1: Network architecture for partial-ring PET image
correction.

INR learning involves representing images using a neu-
ral network. We used a coordinate-based multi-layer
perceptron (MLP) [8], M(θ) that transforms pixel co-
ordinates {ci} into their corresponding intensities.Our
model consists of an MLP with 8 fully connected lay-
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ers, 256 neurons each, employing sinusoidal activation
functions. For efficient high-frequency signal repre-
sentation, we used Fourier feature encoding, given by
F (ci) = [cos(2πBci), sin(2πBci)]T . The matrix B,
drawn from a Gaussian distribution with σ = 4 con-
trols the frequency range. Inspired by a previous work
that initialises the INR network parameters by pre-
initialising the network with a prior image [9], we pre-
trained the network with the uncorrected PET image
from the limited-angle scan, which is the only accessible
PET image of the scanned object in the real clinical
scenario.
The PET reconstruction problem is often described as

x̂ = argmin
x

∥Ax − y∥2
2, (1)

where x is the reconstructed image, y is the measured
data, and A is the forward model encapsulating the
imaging physics.
With the INR learning, we parameterised the image x
by the INR network, i.e., x = M(θ). The corresponding
training loss function is therefore designed as

θ̂ = argmin
θ

∥AM(θ̂) − y∥2
2. (2)

Once trained, the recovered image x̂ is inferred by x̂ =
M(θ̂). The network architecture is depicted in Figure 1.

2.2 Datasets

Three distinct datasets employed for evaluation of our
network are as follows:

• MRI-based Brain Phantoms: Twenty brain
phantoms were sourced from BrainWeb [11, 12],
and were adjusted to the PETITION scanner’s
resolution. Grey to white matter ratio was set at
4 : 1, mimicking 18F[FDG] PET and a hyperintense
lesion was added onto each phantom. The geometry
and the angular field of view of the PETITION PET
scanner [10] was replicated.

• Monte Carlo Simulation: A Derenzo phantom
with spheres of diameter 2.0, 2.2, 2.6, 3.2, 4.0 and
5.0 mm was simulated in GATE(v9.0) [13], where
each sphere was uniformly filled with 18F. The total
simulated activity was 19 MBq with the acquisition
time being 1800 seconds.

• Real-Data Acquisition: Utilizing a hot-rod phan-
tom with uniform 18F distribution, data was ex-
perimentally acquired with the PETITION PET
scanner to reflect a realistic scenario of the physical
effects.

2.3 Model Training

Model training was performed on a NVIDIA GV100GL
GPU using PyTorch with the Adam optimiser. The
model’s performance was assessed using mean squared er-
ror (MSE), peak signal-to-noise ratio (PSNR), structural
similarity index measure (SSIM) for different datasets
in comparison to the ground-truth image that would
have been obtained with a full-ring PET scanner. For
the digital brain phantom dataset, we also compared
the INR model with the widely used 2D U-Net [14].
Unlike the INR, the U-Net, being a data-dependent
model, required division of the data into training, test-
ing, and validation sets. Of the twenty brain phantoms,
fifteen were allocated for training, four for testing, and
one for validation. For the Derenzo phantom, peak-
to-valley (PTV) ratios were computed for line profiles
generated through different sphere diameters to assess
the quantitative performance of the model. PTV ra-
tio was calculated as the average intensity ratio of the
uptake and no uptake region for each sphere.

3 Results

3.1 Digital Brain Phantoms

Figure 2 presents a comparison of various images for a
slice of one of the brain phantoms. Quantitative com-
parison shows that the input partial-ring image lacks
clarity (low PSNR and SSIM) and cannot reconstruct
the lesion effectively. The U-Net and INR yielded simi-
lar SSIM and PSNR values, but INR-based correction
outperformed U-Net in lesion reconstruction visually
(figure 2) along with the required training times (15
minutes vs. 2 hours for U-Net).

3.2 MC Simulated Derenzo Phantom

Figure 3 displays the INR-corrected Derenzo phantom
image, showing visually clear distinction between up-
take and no-uptake regions. With prior initialization,
INR achieves a PSNR of 31.73dB and an MSE error
of 4 × 10−4. Without prior initialization, it achieves a
PSNR of 27.95dB and an MSE error of 1 × 10−3. INR
also exhibits higher SSIM values (0.95 with prior, 0.82
without) compared to the ground truth full-ring image.
Quantitative analysis using PTV ratios (Figure 4) fur-
ther validates the superior performance of INR, particu-
larly when initialized with a prior. PTV ratios for the
2mm spheres are not indicated as this is beyond the
resolution capabilities of the PETITION scanner.

3.3 Measured Hot-Rod Phantom

Visual comparison in Figure 5 demonstrates the im-
proved image quality of the INR-reconstructed image
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Figure 2: The central slice of a digital brain phantom. From left to right: original partial-ring MLEM reconstruction, corrected
image using U-Net, corrected image using the proposed INR, and reference ground-truth image obtained with the full-ring
scan.

Figure 3: Results of the INR learning in representing the MC
simulated Derenzo phantom.(a) Ground truth full-ring image,
annotated with sphere diameters.(b) Partial-ring image.(c)
Prior initialized INR corrected image and (d) INR corrected
image without a prior.

Figure 4: Peak-to-valley(PTV) ratio comparison amongst
the four reconstructed Derenzo phantom images shown in
Figure 3 for different sphere diameters.

compared to the initial partial-ring reconstruction. INR
achieved a PSNR of 35.49 dB and an SSIM of 0.98 com-
pared to the ground-truth full-ring PET image. Line
profiles also illustrate INR’s ability to recover intensities
comparable to the ground truth full-ring image.

4 Discussion

This study presents an INR-based approach for partial-
ring PET image correction. Unlike traditional data-
driven deep learning methods that often suffer from
overfitting issues and require extensive datasets, the pro-
posed INR model does not require any external dataset
but only uses the acquired partial-ring image for model
training. This patient-specific nature of INR enables
optimized imaging for each individual scan.
The efficiency of INR learning is seen by its faster train-
ing times compared to the 2D U-Net model. Addition-
ally, the size of the model is dependent on the complexity
of the signal rather than the discrete voxel grid size.
Our evaluation across three distinct datasets (analyti-
cally simulated brain phantom data, Monte Carlo sim-
ulated data, and phantom measurement data) demon-
strates its robustness. For the digital brain phantom
data, the INR model consistently achieved high PSNR
and SSIM values, comparable or superior to U-Net, but
with the added advantage of reduced training time. The
model’s ability to recover signal in artificially-inserted
lesions in the brain phantom dataset, as seen in figure
2, illustrates its effectiveness in capturing structural
changes and recovering missing signals. Inclusion of
scanner effects in the dataset further extends the ap-
plication of the method to realistic imaging scenarios.
The performance improves with prior initialization of
the INR model, especially in intensity prediction and
separation of individual spheres in the Derenzo phan-
tom. Similar performance was observed in measured
data, reinforcing the application to different scenarios.
Furthermore, the proposed network architecture can
significantly benefit longitudinal PET studies. For in-
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Figure 5: Depiction of full-ring, partial-ring and INR reconstructed images for the experimental hot-rod phantom. Line profile
through the red line indicated in the three images is shown in the fourth column.

stance, in fractionated treatments where a new PET
scan is required for verification or adaptation, the model
trained during the first fraction can be reused for subse-
quent fractions. This not only saves inference time but
also utilizes prior information to fine-tune important
features.
Despite its advantages, the model has only been tested
for phantom studies, due to the constraints of the PETI-
TION PET scanner. This highlights the need for further
validation with measured patient data. Future work will
explore the model’s performance in patient imaging and
its extendibility to higher dimensionalities, such as 3D
PET imaging.

5 Conclusion

This study demonstrates an INR-based approach for
PET image correction, offering significant advantages
in terms of efficiency and image quality. The model has
been evaluated for partial-ring PET scanners without
requiring a large training dataset. This approach helps
in the development of further dedicated limited angle
PET scanners or tomographs for varying applications.
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