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Abstract We previously developed a mechanistic hidden Markov model
(HMM) to predict the lymphatic tumor progression in oropharyngeal
squamous cell carcinomas. To extend the model to other tumor subsites
in the head and neck defined by ICD-10 codes, we develop a mixture
model combining multiple HMMs. The mixture coefficients and the
model parameters are learned via an EM-like algorithm from a large
multi-centric dataset on lymph node involvement. The methodology is
demonstrated for tumors in the oropharynx and oral cavity. The mixture
model groups anatomically nearly subsites and yields interpretable
mixture coefficients consistent with anatomical location. It allows the
prediction of differences in lymph node involvement depending on
tumor subsite.

1 Introduction

Head and neck squamous cell carcinomas (HNSCC) fre-
quently spread through the lymphatic system [1, 2]. Current
diagnostic imaging modalities are unable to detect micro-
scopic lymph node metastases [3, 4]. To avoid nodal re-
currences, large volumes in the neck, which are at risk of
harbouring occult disease, are irradiated electively. Guide-
lines about which lymph node levels (LNLs) to irradiate [5]
are currently not based on a patient’s individual risk, but
on the overall prevalence of nodal disease as reported in the
literature [1, 2].
To personalize the prediction of the risk for occult disease,
given a patient’s individual diagnosis, we first published a
large, multi-centric dataset that reports per patient which
LNLs were clinically/pathologically involved [6, 7].
And subsequently, building on this work, we published an
interpretable hidden Markov model (HMM), trained with this
data, to predict the risk for occult nodal disease, given an
individual patient’s diagnosis [8].
Such a personalized risk prediction may allow clinicians to
safely reduce the elective clinical target volume (CTV-N) and
thus reduce side-effects that degrade the patient’s quality of
life without compromising treatment efficacy [9].

Here, we extend the previous work by incorporating the
primary tumor location (specified as ICD-10 code) into the
model of lymphatic tumor progression, focusing on tumors
in the oropharynx and the oral cavity. HNSCC patients with
primary tumors at different subsites show different patterns
of lymphatic spread [1, 2]. So far, this could be handled
by training different models for broader categories of tumor
locations, e.g. oropharynx and oral cavity tumors. However,
this approach does not describe differences in lymphatic
spread between different subsites within the oropharynx and
oral cavity. To address this issue, we present an approach
using mixtures of HMMs. The intuition is that the lymphatic
spread of a tumor that lies anatomically at the boarder of
oropharynx and oral cavity (e.g. tumors in the palate) may be
described by a mixture of different models. Tumor subsites
used in this work are sketched in figure 1.

2 Materials and Methods

Each LNL 𝑣 ∈ {1,2, . . . ,𝑉} considered in our model is repre-
sented by a binary random variable 𝑋𝑣 representing the true
state of that level (0 for “healthy” and 1 for “involved”). A pa-
tient’s state of lymph node involvement can be represented in
a random vector X = (𝑋1, 𝑋2, . . . , 𝑋𝑉 ). When a patient is diag-
nosed with HNSCC, we only observe the clinical lymph node
involvement based on imaging, which we denote as another
binary random variable 𝑌𝑣 . To compute the personalized risk
of occult disease X, given a diagnosis Y, we apply Bayes’ law:

𝑃 (X | Y) = 𝑃 (Y | X) 𝑃 (X)∑
X★ 𝑃 (Y | X★) 𝑃 (X★) (1)

In the above equation, the term 𝑃 (Y | X) is given by the
sensitivity and specificity of the diagnostic procedure. The
term 𝑃 (X) represents the prior probability of involvement,
which depends on the probability of the tumor to spread
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through the lymphatic system. The main task of the HMM is
to model 𝑃 (X) and the main contribution of this paper is to
incorporate the primary tumor subsite into the model of 𝑃 (X).

2.1 Hidden Markov Model for Lymphatic Progression

A patient’s state of lymph node involvement X[𝑡] evolves over
discrete time steps 𝑡. Let us enumerate all 2𝑉 possible states,
representing all combinations of LNLs. In this paper, we
consider ipsilateral LNLs I, II, III and IV, which amounts to 16
possible states. The HMM is specified by a transition matrix:

A =
(
𝐴𝑖 𝑗

)
= 𝑃

(
X[𝑡 +1] = 𝝃 𝑗 | X[𝑡] = 𝝃𝑖

)
(2)

whose elements 𝐴𝑖 𝑗 contain the conditional probabilities that
a state X[𝑡] = 𝝃𝑖 transitions to X[𝑡+1] = 𝝃 𝑗 over one time step.
The transition matrix is specified and parameterised via the
graphical model shown in figure 1. The red arcs in the graph
of figure 1 (right panel) are associated with the probability
that the primary tumor spreads directly to a LNL (parameters
𝑏𝑣). The blue arcs describe the spread from an upstream
LNL – given it is already metastatic – to a downstream level
(parameters 𝑡𝑣→𝑣+1). Now, let 𝝅 be the starting distribution

𝝅 =
(
𝜋𝑖
)
= 𝑃

(
X[0] = 𝝃𝑖

)
(3)

denoting the probability to start in state 𝝃𝑖 at time step 0.
Assuming that every patient started with all LNLs being
healthy, we set 𝜋𝑖 to zero for all states except the completly
healthy state 𝝃 =

(
0,0,0,0

)
, which has probability one.

Using the quantities introduced so far, the probability
𝑃
(
X[𝑡] = 𝝃𝑖

)
to be in state 𝜽 𝑖 in time step 𝑡 can now be

conveniently expressed as a matrix product:

𝑃
(
X[𝑡] = 𝝃𝑖

)
=
(
𝝅 ·A𝑡

)
𝑖

(4)

This evolution implicitly marginalizes over all possible paths
to arrive at state 𝝃𝑖 after 𝑡 time-steps. Additionally, we must
marginalize over the unknown time of diagnosis using a time-
prior 𝑃𝑇 (𝑡). This finally defines the probability distribution
over all states of lymph node involvement used in equation 1.

𝑃
(
X = 𝝃𝑖 | 𝜽

)
=

𝑡max∑︁
𝑡=0

𝑃𝑇 (𝑡)
(
𝝅 ·A𝑡

)
𝑖

(5)

where 𝜽 = {𝑏𝑣 , 𝑡𝑣→𝑣+1} denotes the set of all model parame-
ters (7 in our case). Fortunately, the exact length and shape
of this distribution has little impact as previously shown [8].
We set 𝑡max = 10 and 𝑃early(𝑡) to a binomial distribution with
parameter 0.3. Further details on the HMM can be found in
Ludwig, Pouymayou, Balermpas, et al. [8] and Ludwig [10].

2.2 Mixture of HMMs

We now assume that primary tumors at different subsites have
different patterns of lymphatic spread, corresponding to differ-
ent model parameters 𝜽 . Training a separate model for every

tongue, other (C02)

gum (C03)

floor of mouth (C04)

palate (C05)

oropharynx, other (C10)

tonsil (C09)

base of tongue (C01)

T

Figure 1: On the left: Anatomical sketch of the tumor subsites
and corresponding ICD-10 codes considered in this work. The
subsite “other parts of mouth” (C06) was not drawn. On the right:
Parametrized graphical model of the lymphatic network considering
four LNLs. Blue nodes represent the hidden states of LNLs 𝑋𝑣 ,
while the red one is the tumor. Arcs represent possible routes of
metastatic spread, associated with a probability.

possible subsite (ICD-10 code) would require a sufficiently
large dataset for every tumor site. However, anatomically
nearby locations are expected to show very similar patterns of
LNL involvement. Therefore, we consider a mixture model.
Let us assume that we have a dataset D that is specified
via the number of patients 𝑁𝑖𝑠 that were diagnosed in LNL
involvement state 𝑖 and had a primary tutor in subsite 𝑠.
Let us further assume that we want to describe this dataset
using a mixture of 𝑀 HMMs, each with a different set of
model parameters 𝜽𝒎. As the generative model of the data,
we assume that a patient with subsite 𝑠 is generated with
probability 𝜋𝑠𝑚 from model 𝑚. The likelihood of the dataset
can then be written as

𝑃 (D | 𝜽 ,𝝅) =
∏
𝑠

∏
𝑖

[
𝑀∑︁
𝑚=1

𝜋𝑠𝑚𝑃𝑚

(
X = 𝝃𝑖 | 𝜽𝑚

) ]𝑁𝑖𝑠

(6)

We now have two types of parameters, the probabilities of
tumor spread for the different models, 𝜽𝒎, and the mixing
coefficients 𝜋𝑠𝑚. Assuming a uniform prior in the interval
[0,1] for all parameters, the posterior distribution over the
parameters 𝑃 (𝜽 ,𝝅 | D) is given by the likelihood in equation 6
except for a normalisation constant. In this work, we use
Markov chain Monte Carlo sampling (MCMC) via the emcee
Python package [11] to sample model parameters from the
posterior distribution. However, 𝑃 (𝜽 ,𝝅 | D) itself is a multi-
model distribution because one can permute the different
models. To address this problem, we revert to an expectation-
maximization (EM) algorithm where we iterate two steps until
convergence of the mixing coefficients. In the E-step, we
sample model parameters 𝜽𝒎 using MCMC for given mixing
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coefficients 𝜋𝑠𝑚. In the M-step, we maximize the likelihood
with respect to the mixing coefficients for given samples of 𝜽𝒎

2.3 Multi-Centric Data

For the analyses in this work, we used five datasets from four
different institutions, resulting in 1242 patients in total.

1. 287 oropharyngeal patients from the University of Zurich
in Switzerland

2. 263 oropharyngeal patients from the Centre Léon Bérard
in France

3. 289 oropharyngeal and oral cavity patients from the
Inselspital Bern in Switzerland

4. 239 oropharyngeal and oral cavity patients from the
Centre Léon Bérard in France

5. 162 oropharyngeal patients from the Hospital Vall
d’Hebron in Spain (not yet public)

The data sets 1-4 are publicly available in the form of
CSV tables [7, 12] and may be interactively explored in
our Lymphatic Progression eXplorer LyProX. For each pa-
tient, the primary tumor subsite is reported (among other
patient and tumor characteristics) and each individual LNL is
reported as metastatic or healthy, according to the available
diagnostic modalities (in part pathology after neck dissection,
otherwise clinical involvement).
In figure 2, we plot the prevalence of involvement in the four
ipsilateral LNLs I, II, III, and IV stratified by the primary
tumor’s subsite. The figure illustrates the variations in LNL
involvement between subsites within the oral cavity and
oropharynx categories. The number of patients for each
subsite is indicated in figure 3.

3 Results

We demonstrate the methodology for a mixture model with
𝑀 = 2 components, considering the ipsilateral involvement
of LNLs I, II, III, and IV and the primary tumor subsites

Figure 2: Prevalence of ipsilateral LNL involvement stratified
by subsite. The subsites are sorted in ascending order by their
prevalence of involvement in LNL II. Oral cavity subsites are
plotted in shades of blue, oropharynx subsites in shades of orange.

shown in figure 2. In figure 3 we show the resulting mixture
coefficients 𝜋𝑠𝑚. The interpretation of this result is as follows:
tumors of the base of tongue (C01) are fully described by
component A, and tumors of the gum (C03) are fully described
by component B. These two subsites are the most distinct
regarding the involvement of LNLs I and II, and the result is
thus intuitive. Component A may be interpreted as a model
for oropharynx-like tumor spread, and component B as a
model for oral cavity-like tumor spread. All other subsites are
described as mixtures. tumors in the tonsil (C09) have LNL
involvement similar to base of tongue tumors and are mostly
assigned to component A. Instead, tumors of the palate (C05)
are to similar degree assigned to components A and B, which
is consistent with the anatomical location and the observation
that the LNL involvement is in between oropharynx and oral
cavity-type patterns (figure 2).

Figure 3: Assignment of each subsite to each of the two compo-
nents. The further left a subsite, the more it is assigned to component
A, the further right, the more to component B. The size of the
marker (area) corresponds to the number of patients in the subsite.

The figure 4 illustrates the model’s predictions of the overall
prevalence of lymph node involvement in LNLs I, II and III
(filled histograms) for selected subsites, obtained by summing
the probabilities of states where the respecive level is involved.
The mixture model is compared to two independent HMM
models trained for oral cavity and oropharynx (by pooling the
respective subsites). The mixture model and the independent
oropharynx model perform similarly for tonsil tumors (C09),
which is the largest patient group, dominating the independent
oropharynx model and the component B in the mixture
model. However, the mixture model better predicts the higher
prevalence in level II for base of tongue and palate tumors.

4 Discussion

We have previously developed a model of lymphatic progres-
sion of HNSCC using HMM, which allows us to estimate
the probability of occult lymph node metastases in clinically
negative LNLs. Mixture models are a suitable method to
incorporate the primary tumor location into the model, which
allows us to account for differences in lymph node involve-
ment for different subsites. Future work will extend the work

https://lyprox.org
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Figure 4: The prevalence of involvement as seen in the data (vertical dashed lines), predicted by an independent model for the
oropharyngeal or oral cavity patients (outlined histograms), and predicted by the mixture model (filled histograms). Each row correpsonds
to one subsite and each column to one LNL.

to tumors in the hypopharynx and larynx and optimize the
number of model components.
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