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Abstract Artificial Intelligence (AI) is gaining momentum in medical
fields like radiation therapy. Models to delineate structures and predict
optimal dose trade-off for patients are developed by the research com-
munity. Although some of these models are starting to be implemented
clinically, an end-to-end workflow with a user-friendly graphical in-
terface to visualize the result of successive AI models and to support
decision of treatment indication is still prospective.

To address this problem, we present PARROT, a free and open-source
web platform that facilitates the use of AI delineation and dose pre-
diction models and the visualization of the models outputs. The treat-
ment decision support shows clinical evaluation tools to compare dose
distributions, among which normal tissue complication probabilities
(NTCP) models.

1 Introduction

Artificial Intelligence (AI) is gaining momentum in medical
fields like radiation therapy. Models to delineate structures
and predict optimal dose trade-off for patients are developed
by the research community. Although some of these models
are starting to be implemented clinically, an end-to-end
workflow with a user-friendly graphical interface to visualize
the result of successive AI models and to support decision of
final treatment indication is still prospective.

To address this problem, we introduce PARROT which stands
for Platform for ARtificial intelligence guided Radiation
Oncology Treatment. PARROT is a user-friendly, free and
open-source web platform which allows users to visualize
DICOM files, run AI models in a single mouse click, display
and evaluate predictions easily. Several trained state-of-the-
art dose prediction and contour segmentation models are
available. Moreover, users can add their own models from
the embedded code editor. The app consists of a front-end
built in React JavaScript including the graphical interface
with DICOM viewer, a selection panel of AI models, an
editor of contours predictions and evaluation tools. The back-
end is built with Flask to handle the predictions of AI models.

Download instructions are available on our website
https://huggingface.co/spaces/AI4MIRO/parrot.ai and the
source code can be found on the Gitlab repository
https://gitlab.com/ai4miro/parrot.

2 Materials and Methods

The interface is organized in four screens, Figure 1.

Figure 1: Overview of the PARROT platform.

2.1 Study Management

Users can import patient data from this screen to a Orthanc
daemon—a lightweight, standalone DICOM server [1]. It
runs locally and therefore ensures the confidentiality of pa-
tient files. The interactions with the Orthanc daemon are
done through its RESTful API [2]. The list of patient data
present in the Orthanc server is displayed with summarized
information (Figure 2). Users can load the data into the app
by clicking on the Load button. The left icon displays more
complete information from DICOM tags (Figure 3) and users
can delete a patient study from the server with the red arrow
on the right.

2.2 AI Models Management

Eight segmentation models and six dose prediction models
are made available and listed on the screen (Figure 4). These
models are trained from state-of-the-art architectures such as
nnUNet [3], SwinUNETR [4] and HDUNet [5] (Table 1). On
the left hand side of each line, a standardized description of
the model is available. The PDF description file contains de-
tails about the architecture with a link of the original research
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Figure 2: Study management screen.

Figure 3: Content information of the study stored in DICOM tags.

article, details on the training process including dataset, and
performance on our test set (Figure 5).

Figure 4: AI Models Management screen. A list of the embedded
AI models are displayed.

To run a model prediction, the user simply clicks on the
yellow Prediction button on the right hand side of the model
line. This will open a Python scripting editor to run the
code (Figure 6). Users can select a Python environment
with a set of libraries from the drop-down menu in the upper
right corner. By hovering on an item, a description of the
libraries it contain is displayed. Once the prediction is
done, users can upload the result to the study to visualize
the output in the Patient Modeling screen (Figure 8). Users

SwinUNETR

Trained by Margerie Huet Dastarac

Training date: November 2023

1 Task description

Segmentation of the body on the CT scan on a dataset of 60 oropharyngeal pa-
tients. This model can be used to clean CT scans by setting voxels value outside
of the body contour to air, a typical preprocessing step for other networks.

2 Model

2.1 Architecture

Figure 1: SwinUNETR architecture

2.2 Input

• CT

2.3 Outputs

• BODY

1

2.4 Training details

• Number of epochs: 300

• Loss function: Dice loss

• Optimizer: Adam

• Learning Rate: 3e-4

• Dropout: No

• Patch size in voxels: (128,128,128)

• Data augmentation used:

– RandSpatialCropd

– RandFlipd axis=0

– RandFlipd axis=1

– RandFlipd axis=2

– NormalizeIntensityd

– RandScaleIntensityd factors=0.1 prob=1.0

– RandShiftIntensityd, offsets=0.1, prob=1.0

3 Dataset

• Location: Head and neck, oropharynx

• Training set size: 60

• Data type: CT scans and body contours

• Resolution in mm: 3x3x3

• Preprocessing:

4 Performance

TBD
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Figure 5: Example of PDF with description of a specific model
provided in PARROT.

also have the flexibility to run their own models by loading
their processing and inference scripts in the Python scripting
editor. On our website, we provide a description and
examples using the API to retrieve the patient information
loaded on PARROT and upload the result.

Figure 6: Python scripting editor. Users can edit their script, run
and display output from this window.

We distinguish two categories of models: the segmentation
models and the dose prediction models. A key difference
between the two categories is that segmentation models
require only the anatomy of the patient (CT scan or MRI
image) whereas dose prediction models also require binary
masks of tumor volumes (TV) and organs at risk (OARs).
For the latter, we implemented a dialog that allows users to
map structures present in the current patient data and the
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input required for the AI dose prediction model, Figure 7.

Figure 7: Mapping dialog between structures present in the current
patient data and required inputs of the model. The left column
displays the input channels required for that specific AI model and
the right column a drop-down list of the contours available in the
loaded patient study.

2.3 Patient Modeling

This screen allows an interactive visualization of contours,
whether uploaded by the user or generated by AI models in
the previous tab. Similarly to the visualization of treatment
planning software, users can scroll through the anatomy and
contours of the patient, zoom, pan and change window range
and levels. Users can edit contours with the different tools
that can be seen Figure 8. The platform maintains a detailed
history of modifications, and users can provide descriptive
labels for refining AI models.

Figure 8: Patient Modeling screen.

2.4 Plan Evaluation

A comprehensive display of two dose distributions compari-
son is presented on the last screen. The two dose distributions
can originate from the importation step or result from the
inference of AI models. We provide a set of tools for compar-
ison, such as dose-volume histograms (DVH) curves, dose
statistics, and the fulfillment of clinical goals. Clinical goals

can be uploaded following an Excel template so that it fits any
clinical requirements of the users institutions. The platform
incorporates treatment indications based on NTCP protocols.
It has been shown in multiple studies that predicted dose
distributions yield meaningful output when used with NTCP
models for treatment selection decision support [6, 7]. Two
NTCP protocols, validated by the clinical community have
been integrated, one for head and neck cancer patients (with
four NTCP models for xerostomia grade ≥ II and grade ≥
III and dysphagia grade ≥ II and grade ≥ III)[8] and one for
esophagus cancer patients to estimate pulmonary complica-
tions probabilities [9]. This is a useful decision support tool
for the clinical community.

Figure 9: Plan Evaluation screen.

3 Results

Three main use cases that can benefit from PARROT are the
following.

3.1 Visualization of state-of-the-art AI models on pa-
tient of local institute

The integration of a novel AI model within a clinical setting
necessitates a careful and meticulous analysis of the tool. It is
imperative to conduct thorough testing using a local patient
database to compare the performance of the model in its
initial testing conditions and the specific context of the new
healthcare institution. The PARROT framework facilitates
seamless visualization of predictions, eliminating the need
for manual coding.

3.2 Curate own AI segmentation models with the con-
tour editing tools

Utilizing the features available on the viewer screen, clini-
cians have the capability to rectify contours produced by AI
models and annotate the rationale behind the modifications.
This process helps to identify systematic errors and limita-
tions of the AI models, guiding efforts to curate the training
set and retrain the model.
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Segmentation Dose prediction

Location Architecture Location Architecture

Head and Neck Nodes nnUNetv2 Head and Neck PT HDUNet
Head and Neck OARs nnUNetv2 Head and Neck VMAT HDUNet
Prostate OARs nnUNetv2 Prostate IMRT HDUNet
Breast OARs nnUNetv2 Breast PT HDUNet
Brain OARs nnUNetv2 Esophagus IMRT HDUNet
Brain Tumor SwinUNETR Esophagus PT HDUNet
Esophagus OARs nnUNetv2
Body SwinUNETR

Table 1: List of provided AI models.

3.3 Decision support between PT and XT treatments

The dose evaluation screen of PARROT serves as a decision
support tool for choosing between PT and XT treatments.
Users can have a seamless overview of DVH curves, dose
metrics, clinical goals reached and indication of NTCP mod-
els. In the current version, AI dose prediction models and
corresponding NTCP models are provided for oropharyngeal
cancer patients (PT versus VMAT) and esophageal cancer
(PT versus IMRT).

4 Discussion

We believe that PARROT can have a positive impact on
the safe integration of AI models in the clinic. On the one
hand, PARROT can facilitate model comparison, sharing,
and benchmarking by the research community. On the other
hand, it can foster the dissemination of AI models to the
clinics, standardizing and improving the medical practice.
In addition, it can be a valuable tool to foster consensus
between experts when updating or creating new contouring
and planning guidelines. In the future, we would like to
extend PARROT to integrate different methods of uncertainty
quantification both for segmentation and dose prediction
models. These uncertainty estimation tools can be used to
curate AI models and datasets and flag out-of-distribution
patients and therefore indicate clinicians that the AI model
should not be used for that specific patient.

Currently, the platform supports CT and MR images, and
automatically applies a registration field whenever a REG
DICOM file is uploaded. But future releases will allow PET
scan to be viewed and used by AI models.

5 Conclusion

PARROT is a a free and open-source web platform that facil-
itates the use of AI models in the radiation therapy field. The
web platform allows users to visualize DICOM files, run AI
models (contour segmentation and dose prediction models)

in a single mouse click, display and evaluate predictions eas-
ily. PARROT offers clinical evaluation tools to compare dose
distributions and support treatment decision. Among these
tools, users can find dose-volume histograms curves, dose
statistics, validation of clinical goals and outputs of normal
tissue complication probabilities models. We believe that
PARROT can have a positive impact on the safe integration
of AI models in the clinic.
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